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ABSTRACT

Land surface models are notorious for containing many parameters that control the exchange of heat and

moisture between land and atmosphere. Properly modeling the partitioning of total evapotranspiration (ET)

between transpiration and evaporation is critical for accurate hydrological modeling, but depends heavily on

the treatment of turbulence within and above canopies. Previous work has constrained estimates of evapo-

transpiration and its partitioning using statistical approaches that calibrate land surface model parameters by

assimilating in situ measurements. These studies, however, are silent on the impacts of the accounting of

uncertainty within the statistical calibration framework. The present study calibrates the aerodynamic, leaf

boundary layer, and stomatal resistance parameters, which partially control canopy turbulent exchange and

thus the evapotranspiration flux partitioning. Using an adaptiveMetropolis–Hastings algorithm to construct a

Markov chain of draws from the joint posterior distribution of these resistance parameters, an ensemble of

model realizations is generated, in which latent and sensible heat fluxes and top soil layer temperature are

optimized. A set of five calibration experiments demonstrate that model performance is sensitive to the

accounting of various sources of uncertainty in the field observations andmodel output and that it is critical to

account for model structural uncertainty. After calibration, the modeled fluxes and top soil layer temperature

are largely free from bias, and this calibration approach successfully informs and characterizes uncertainty in

these parameters, which is essential for model improvement and development. The key points of this paper

are 1) a Markov chain Monte Carlo calibration approach successfully improves modeled turbulent fluxes;

2) ET partitioning estimates hinge on the representation of uncertainties in themodel and data; and 3) despite

these inherent uncertainties, constrained posterior estimates of ET partitioning emerge.

1. Introduction

The partitioning of total evapotranspiration (ET) into

contributions from surface evaporation and plant tran-

spiration provides acute insight into the hydrological

and biogeochemical coupling and behavior of ecosystems,

but is notoriously difficult to constrain. Several methods

exist for ET partitioning, but they can be challenging to

implement in the field. Total ET is most commonly de-

termined via micrometeorological methods, such as eddy

covariance (Baldocchi et al. 1988). Transpiration T may
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be determined by chamber gas exchange or sap flow

methods, then divided by total ET to obtain the transpi-

ration fraction T/ET. In practice, however, these methods

are applied on plant- or plot-level scales, so obtaining

results representative of the ecosystem as a whole is lim-

ited by surface and vegetation heterogeneity (Schaeffer

et al. 2000; Jarvis 1995; Ehleringer et al. 1993). Soil

evaporation can be measured using soil weighing lysime-

ters, but limitations include difficult implementation and

potentially poor spatial representation (Dunin 1991).

ET partitioning quantifies the relative use of the

pathways moisture may follow from the soil water to

above-canopy water vapor, which is directly related to

the surface fluxes. These, in turn, draw from and con-

tribute to themodel state variables, the temperature and

water content of soil, vegetation, and air. The transport

of moisture and heat throughout an ecosystem is com-

monly modeled as an analogy of a series of electrical

resistors (e.g., Oleson et al. 2010). In light of the known

uncertainty in parameterizations for these resistances, it

is hypothesized that model realizations that best match

observations of surface fluxes and state variables are

those where the resistance terms are correctly modeled

(Landsberg and Powell 1973; Baldocchi et al. 1987;

Dauzat et al. 2001; Liu et al. 2007). Previous modeling

studies for ET partitioning have found the canopy re-

sistance to be a particularly influential parameter (Song

et al. 2016; Zhu et al. 2013). These studies point to

Bayesian calibration methods as a fruitful approach to

constrain model predictions for the transpiration frac-

tion of total ET, or T/ET.

Estimates of T/ET for a region, however, may be in-

consistent and poorly constrained. For example, for sim-

ilar sites in the Sonoran Desert, estimates of transpiration

fraction range from 7% to 80% (Sammis and Gay 1979;

Liu et al. 2005). Another example at an open-canopy

forest site (which will be the subject of this study) has

yielded estimated distributions of T/ET that are bimodal

and span the entire 0–1 range (Berkelhammer et al. 2016).

Models driven by meteorological fields can provide con-

straint on T/ET by simulating individual evaporation and

transpiration streams. However, these models depend on

parameterizations that are not easily validated or cali-

brated beyond a small number of idealized cases. There-

fore, the difficulty in acquiring direct measurements of

T/ET places high demand on developing formal calibra-

tion frameworks through which limited observations may

be combined with physical models (Abbaspour et al.

2015). Even within a statistical calibration framework,

however, different plausible estimates of uncertainty and

different calibration approaches may lead to differing

predicted model outcomes (Schmidt et al. 2016; Morton

et al. 2013; Jeremiah et al. 2011). Previous studies remain

silent on the impacts of error accounting within a statis-

tical model on resulting estimates for T/ET.

In the present study, we advance previous work by

employing a Bayesian calibration framework to evalu-

ate the impacts of uncertainty accounting on estimates

of T/ET. In particular, for the case of a 145-day field

campaign at a site in central Colorado, United States, we

calibrate uncertain model parameters pertaining to the

relative pathways by which moisture and heat are ex-

changed between land and atmosphere and assess the

impacts on model estimates of T/ET. It is shown that

1) the assimilation of tower meteorological data with

model output within a Bayesian calibration framework

provides constraint on the network of ecosystem re-

sistances to moisture and heat transport and 2) the ef-

ficacy of the calibration approach relies on properly

accounting for uncertainties in both the model and ob-

servations. As a consequence of the first point, the in-

formed estimates of the network of resistances lead to an

estimate of themodeledT/ET, and practical estimates of

the posterior uncertainties in model parameters, as well

as T/ET, emerge.

2. Methods

a. Observational data

The observational data consist of meteorological

and hydrological data spanning 145 days from May to

September 2011 in a semiarid open-canopy forest

northwest of Colorado Springs, Colorado. Measure-

ments were made from a 27.1-m-tall tower in the

Manitou Experimental Forest Observatory (MEF;

3980600200 N, 10580600500 W, 2286m elevation). This is a

ponderosa pine forest with minimal undergrowth, a

canopy height of roughly 18.5m, and leaf area index

(LAI) of 1.2 (Ortega et al. 2014; DiGangi et al. 2011;

Kim et al. 2010; Berkelhammer et al. 2016). The MEF

site was selected for this study because of the availability

of high-quality previously validated hydrological and flux

data. Additionally, a recent study employed two different

flux partitioning approaches to determine T/ET at MEF,

which provides a baseline against which the results of

the present study may be compared (Berkelhammer

et al. 2016).

Air temperature (8C), humidity (%), and pressure

(mbar) were measured by a series of Vaisala Humidity

and Temperature Transmitter (HMT337) and Multi-

Weather Sensor (WXT520) probes located at each in-

let. CO2 and humidity concentrations (mmolmol21 and

mmolmol21, respectively) were measured using a

LiCor Li6262. Wind speed (m s21) was measured

using a Gill R3-50 sonic anemometer. CO2 and H2O
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fluxes (mmolm22 s21 and mmolm22 s21, respectively)

were measured using a LiCor Li7000 infrared gas an-

alyzer and Campbell CSAT3 sonic anemometer. Eddy

covariance methods were used to determine latent and

sensible heat fluxes (Wm22). A suite of Kipp and

Zonen CNR1 net radiometers were used to measure

upward and downward longwave and shortwave radi-

ation (Wm22). Observations of soil temperature (K)

were made at depths of 5, 50, 70, 100, and 150 cm using

Campbell Scientific T107 thermistors. Further infor-

mation regarding the experimental setup can be found

elsewhere (Berkelhammer et al. 2013; DiGangi et al.

2011; Ortega et al. 2014).

b. Land surface model

The model used is the National Center for Atmo-

spheric Research Community Land Model, version 4

(CLM4; Oleson et al. 2010). CLM4 is a one-dimensional

land surface model of the energy, momentum, water, and

CO2 exchanges between land and atmosphere, and it

accounts for ecosystem dynamics, biophysical processes,

hydrological processes, and biogeochemical processes.

The Community Land Model is the land component of

the Community Earth System Model (CESM; Hurrell

et al. 2013). Data fields needed as inputs to force CLM4

include incident longwave and solar radiation (diffuse

and direct components), incident precipitation, atmo-

spheric humidity, wind speed, and pressure and temper-

ature (measured at the top of the tower; 27.1m). Surface

data configured for MEF are soil texture, soil color,

monthly LAI and stem area index (SAI), vegetation

composition, and albedo (Vertenstein et al. 2010).

For the calibration data, daily averages of latent heat

flux, sensible heat flux, and top soil layer temperature are

used. Latent and sensible heat fluxes are key quantities in

the exchange of moisture and heat between the land sur-

face and atmosphere and are readily observable by eddy

covariance techniques (Baldocchi et al. 1988). Soil tem-

perature is an attractive option as calibration data because

it is a widely observed state variable and characterizes an

important part of the energy state of the ecosystem. We

note that the top soil layer temperature is distinct from the

radiative temperature of the soil surface.

We account for uncertainty in ecosystem turbulence

characteristics by calibrating the aerodynamic resis-

tances tomoisture and heat transport 1) between surface

and vegetation air fg, 2) between vegetation and above-

canopy air fa, 3) through vegetation stomata fs, and

4) through the leaf boundary layer fb. The calibration

parameters are applied as multiplicative factors in the

default resistance parameterizations as is practiced in

other studies (e.g., Song et al. 2016). That is, inEqs. (3)–(6),

the calibration parameters fs, fb, fa, and fg would all be

equal to one in the underlying CLM4 model. The fol-

lowing section provides an overview of the parame-

terizations in CLM4 most relevant to the present work.

The interested reader is directed to Oleson et al. (2010)

for additional details and to Fig. 1 for a depiction of the

evaporation, transpiration, and total evapotranspira-

tion fluxes; the water pools on which they act; and the

ecosystem resistances that facilitate these transfers of

moisture and heat.

Total evapotranspiration is calculated as described in

Oleson et al. (2010, their Eq. 5.86):

ET52r
atm

q
atm

2 q
s

r
a

, (1)

where ra is the aerodynamic resistance between the veg-

etation canopy and above-canopy air spaces (sm21),

ratm (kgm23) is the atmospheric air density,qatm (kgkg21)

is the atmospheric specific humidity, and qs (kgkg
21) is

the canopy air space specific humidity. Transpiration is

calculated as in Oleson et al. (2010, their Eq. 5.87):

T52r
atm

q
s
2 q

sat
(T

y
)

r
s
1 r

b

, (2)

where qsat(Ty) is the saturation specific humidity (kgkg21)

at the temperature of the vegetation Ty, rs is the sto-

matal resistance (m2 smmol), and rb is the leaf boundary

layer resistance (m2 smmol). We note that Eq. (2) is an

approximation of the true physics of CLM4, which de-

compose the vegetative flux T into contributions from

sunlit and shaded leaves, as well as from evaporation of

canopy-intercepted water.

FIG. 1. Schematic depicting the evaporation and transpiration

pathways contributing to total evapotranspiration in the model.

Adapted from Wong et al. (2017).
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Stomatal resistance (m2 smmol) is calculated as

r
s
5 f

s

�
m

A

c
s

e
s

e
i

P
atm

1 b

�21

, (3)

wherem is a parameter that depends on vegetation type,

A is leaf photosynthesis (mmol CO2m
22 s21), cs is the

CO2 partial pressure at the leaf surface (Pa), es is the

vapor pressure at the leaf surface (Pa), ei is the satura-

tion vapor pressure (Pa) inside the leaf at the tempera-

ture of the vegetation, Patm is the atmospheric pressure

(Pa), and b 5 2000 is the minimum stomatal conduc-

tance (mmolm22 s21) when A 5 0 (Collatz et al. 1991;

Oleson et al. 2010). The factors A, cs, es, and ei are all

modeled by CLM4, Patm is provided as atmospheric

forcing, and m and b are parameters that depend on

vegetation type; all have associated uncertainties. Pa-

rameters m and b, in particular, are known from labora-

tory experiments for various leaf types (Ball 1988; Ball

et al. 1987), though it remains less clear how these pa-

rameters scale up to the ecosystem scale considered by

CLM4. Figure 2 fromCollatz et al. (1991) showed that the

overall match between measured and modeled stomatal

conductance (the inverse of rs) is reasonable, but para-

metric uncertainty in Eq. (3) persists at the leaf scale,

which will aggregate when integrated to ecosystem scale.

Leaf boundary layer resistance (m2 smmol) is param-

eterized as

r
b
5 f

b

1

C
y

 
U

d
leaf

!21/2

, (4)

where Cy 5 0.01ms21/2 is the turbulent transfer co-

efficient between the vegetation surface and canopy air,

U (m s21) is the magnitude of the wind velocity incident

on the leaves at a reference level, and dleaf is the char-

acteristic dimension of the leaves in the direction of the

wind flow (taken throughout CLM4 to be 0.04m; Oleson

et al. 2010). Parameter U is modeled by CLM4 and Cy

and dleaf are parameters that CLM4 prescribes to all

vegetation types.

The aerodynamic resistance to moisture and heat

transfer between ground and canopy air (sm21) is as

follows:

r
g
5 f

g

1

C
s
U
, (5)

where Cs is the turbulent transfer coefficient between the

underlying soil and the canopy air, which is interpolated

between values for bare soil and for dense canopy (Zeng

et al. 2005; Oleson et al. 2010). While the values for rg
calculated using Eq. (5) agree with observational data, it

has been noted that there are few measurements avail-

able that can constrain these values (Zeng et al. 2005).

This lack of direct constraint on rg suggests a need to

constrain this parameter indirectly, through observations

of surface fluxes and state variables.

The aerodynamic resistance between the vegetation

canopy and above-canopy air spaces (sm21) is given by

r
a
5 f

a

q
atm

2q
s

q*u*
, (6)

where u* (m s21) is the friction velocity and q* (kgkg
21)

is the moisture scale (Oleson et al. 2010). Parameters u*
and q* are derived from Monin–Obukhov similarity

theory. Their parameterizations were developed by

separate groups using different data in different pa-

rameter regimes and are intended for global modeling

studies, with typical grid spacing much larger than the

extent of the MEF tower footprint (Zeng et al. 1998).

Therefore, it is not expected that these gridcell-scale

parameters will compare favorably with the site-level

data at MEF, further suggesting calibration is needed.

The resistances rg, rs, ra, and rb are exchange param-

eters that define the way in which the energy and water

balances at the surface behave, yet the theory behind

them is not well established. For example, Liu et al.

(2007) showed that realistic errors in the wind speed

used to determine the aerodynamic resistances can lead

to errors as large as 22% in modeled surface fluxes.

Therefore, estimating these parameters is important to

accurately model the transfer processes. The evapo-

transpiration flux partitioning (i.e., T/ET) is a quantity

that characterizes the hydrological and biogeochemical

behaviors of an ecosystem, and the resistance parame-

ters selected here partly control the balance of evapo-

ration and transpiration fluxes in the model. Therefore,

the effects of the error accounting on the modeled sea-

sonal averageT/ET are analyzed to assess the impacts of

the calibration approaches.

c. Model biases and the need for a statistical approach

In the control model, CLM4 output displays sub-

stantial errors and biases relative to the observational

data, aggregated to daily time scale (Fig. 2). The gray

shaded regions denote a plus/minus one observational

standard error region around the observations. The

model represents these physical processes qualitatively

well, as peaks and troughs in the data are present in the

modeled values. However, the error distributions are

not centered at zero, indicative of model structural er-

rors (Figs. 2d–f). The low latent heat flux bias at MEF

(225Wm22) is consistent with the generally low bias

found in northern midlatitude sites in a global analysis
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(Bonan et al. 2012). The fact that both the latent heat

flux and sensible heat flux exhibit negative biases may

seem surprising because this points to a substantial total

bias in the surface energy budget. However, both surface

fluxes are facilitated by the network of aerodynamic

resistances (cf. Fig. 1), so it is reasonable for the fluxes to

be impacted similarly by uncertainties in these re-

sistance parameters. It is unclear to what degree these

biases are attributable to model parameter choice or are

an inherent limitation of CLM4 that stems from the use

of approximate equations, thus motivating the need to

account for these model biases.

d. Statistical calibration framework

1) ALGORITHM

Within a statistical framework, the CLM4 model

output is related to various types of observational data.

Using a Bayesian approach, prior distributions on the

model parameters are joined with the CLM4 solution

and assimilated field data, leading to posterior distri-

butions that represent uncertainty in the parameters.

The calibration algorithm proceeds by exploring the

parameter space to discover high-probability regions of

the posterior distribution. In this manner, the calibration

framework enables model simulation results that match

the observational data in light of the model biases and

other uncertainties.

Let h(t, u) 2 R3 refer to the vector of model output

for the calibration fields (latent heat flux, sensible heat

flux, and top soil temperature) at calibration parameter

values u5 ( fg, fs, fa, fb)
T on day t and let y(t) 2 R3 be the

corresponding observations of these fields. Let

a5 (aLE,aH ,aT)
T refer to the model additive bias,

where aLE is the additive bias in the modeled latent heat

flux, aH is the bias in the sensible heat flux, and aT is the

temperature bias. We make the simplifying assumption

aF5 aLE5 aH, where aF is a bias assumed to be present

in both the modeled latent and sensible heat fluxes. In

preliminary experiments (see Fig. 2), the biases in the

sensible and latent heat fluxes were similar enough to

warrant this assumption and thereby reduce the size of

the parameter space the calibration approach must ex-

plore. The impacts of this assumption will be explored

later. The bias corrections aF and aT may be considered

as accounting for model structural error. These biases

FIG. 2. Uncalibrated model results, compared to observational data. Time series of (a) latent heat flux,

(b) sensible heat flux, and (c) top soil layer temperature. (d)–(f) Histograms of the errors in these quantities,

reported as model observations. The gray shaded region denotes plus/minus one observational standard error

around the observations.
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are assumed to be stationary, which is a reasonable as-

sumption for the single growing season dataset forMEF.

This assumption should be carefully examined if the

present method is to be applied to multiseason obser-

vational datasets. Finally, denote the optimal, unknown,

model parameters by u* and let a* be the additive

model bias that optimizes the match between modeled

and observed fluxes and soil temperature. The statistical

model is

y(t)5a*1h(t, u*)1 e(t) . (7)

It is simple to generalize Eq. (7) to include a multipli-

cative bias term as well, but based on exploratory ana-

lyses such flexibility is neither required nor considered in

the present application. For the sake of brevity,

throughout the remainder of this work the term ‘‘bias’’

refers only to the additive bias a.

It is convenient to think of z(t)5a*1h(t, u*) as

representing the physical process the model h seeks to

capture. In Eq. (7), e(t) 2 R3 accounts for model and

observational errors and is modeled as a multivariate

mean zero Gaussian process that is independent be-

tween components and across time points. The impacts

of these assumptions will later be evaluated. Denote by

S the covariance matrix of e(t). We assume independent

and uncorrelated errors, so it suffices at each time t to

specifyS5diag(s2
LE, s

2
H , s

2
T), where sk is the empirical

standard deviation of the set of observations of field k,

where k5 LE,H, or T, for latent heat flux, sensible heat

flux, and top soil layer temperature, respectively. An

experiment will be conducted to assess the impacts of

the assumption of uncorrelated errors [E5; described in

section 2d(2)]. The specific form of S is addressed in the

‘‘Error covariance’’ section below.

The likelihood function L(y j u, a) of y 5 [y(1), . . . ,

y(145)]T (where there are 145 days of data) is then a

product of univariate normal likelihoods. At each time

t5 1, 2, . . . , 145, the normal likelihood is centered at the

observation y(t) with covariance S. Given a joint prior

distribution p(u, a) on the calibration parameters and

biases, the joint posterior probability is

p(u,a j y)}L(y j u,a)p(u,a). (8)

This posterior density contains all uncertainty information

regarding the model parameters and biases, and optimal

values can be derived directly from the posterior (e.g., a

posterior median minimizes absolute Bayes loss).

Prior distributions are required for the model parame-

ters and bias parameters and are assumed to be indepen-

dent between parameters. Each individual component of

u is given a uniform prior with bounds [1/10, 10]. These

bounds are chosen to allow an order ofmagnitude deviation

above or below the control model behavior and to prevent

nonphysical negative parameter values. Themodel flux and

temperature biases are assigned normal priors with mean

zero and standard deviation 100Wm22 foraF and100K for

aT, representing a relatively uninformative prior.

A Markov chain of draws from the joint posterior dis-

tribution of u and a [Eq. (8)] is constructed using the

Metropolis–Hastings algorithm (Metropolis et al. 1953;

Hastings 1970). This approach follows the detailed outline

presented by Higdon et al. (2004) for model calibration,

and a brief overview of the algorithm is given here:

1) Initial values for the Monte Carlo iteration are

selected (u1 and a1).

2) The Metropolis–Hastings algorithm (below) is iter-

ated for j 5 2, . . . , N:

(i) Parameter unew is drawn from a normal distri-

bution with mean uj21 and variance s2u. Simi-

larly, anew is drawn from a normal distribution

with mean aj21 and variance s2a.

(ii) The posterior probability of these new iterates,

p(unew, anew j y), is calculated according to

Eq. (8).

(iii) The acceptance probability p is calculated as

p5min[1, p(unew, anew j y)/p(uj21, aj21 j y)].
(iv) Select the next Markov chain Monte Carlo

(MCMC) iterate uj:
d uj 5 unew, anew with probability p or
d uj 5 uj21, aj21 with probability 1 2 p.

We initialize each component of the proposal density

variances at s2u and s2a at 1. After 500 iterations, an

adaptive Metropolis algorithm is implemented (Haario

et al. 2001). The covariance matrix used to propose new

calibration parameters is the covariance matrix of the

previous iterates, scaled by sd 5 2.38/N1/2 to optimally

explore the parameter space, where N is the dimension

of the parameter space (Gelman et al. 1996).

The aboveMarkov chainmodel generates samples from

the posterior distribution of model parameters u and bia-

sesa. Initial testing using a Latin hypercube analysis of the

six-dimensional parameter space (four calibration param-

eters and two additive biases) highlighted a unimodal re-

gion of high likelihood near u5 (1:50, 0:85, 3:80, 1:00)T;

Markov chains for the calibration parameters are there-

fore initialized at these values. The additive biases a1 are

initialized at 24Wm22 and 4.0K, in light of the biases from

the control model behavior (Fig. 2). Preliminary experi-

ments indicated that initialization at dispersed initial con-

ditions converges to the same posterior modes (see

supplemental material), but is not used for analysis based

on slower speed of convergence relative to using the pre-

liminary Latin hypercube exploration to inform the initial

parameter estimates.
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Theoretically, the Metropolis–Hastings algorithm

converges to a stationary distribution of the calibration

parameters and biases. Gelman–Rubin diagnostics and

inspection are used to assess convergence of our sam-

pling chains (Gelman and Rubin 1992). Six parallel runs

of the adaptive Metropolis–Hastings algorithm outlined

above are each iterated 30 000 times. The first half of

each run is discarded for burn-in and the remaining

values are used for analysis. No thinning is done (Link

and Eaton 2012).

2) ERROR COVARIANCE

Following Kennedy and O’Hagan (2001), four dis-

tinct error terms compose the total uncertainty:

s2
k 5s2

par,k 1s2
obs,k 1s2

rep,k and the calibrated additive

bias term a. Each of these component uncertainties is

described below.

Structural uncertainty (i:e:, a) is the inherent dis-

agreement between any physical model and the process

it seeks to model, due to the use of approximate equa-

tions of nature. We formally define this as the difference

between the model response at the true values of the

calibration parameters and the mean of the physical

process being modeled (Kennedy and O’Hagan 2001),

and it is assumed here to result in a constant bias rather

than contribute to random uncertainty. Because these

optimal parameters are unknown, structural uncertainty

may only be estimated. In the present work, the bias

calibration terms account for structural uncertainty, and

the biases are obtained from the posterior.

Observational uncertainty sobs,k is error due to im-

perfect measurement systems. The values used are

sobs,LE 5 22Wm22, sobs,H 5 15Wm22 (Twine et al.

2000), and sobs,T 5 0.5K (supplied by manufacturer).

Eddy covariance methods rely on measurements of

wind speed, temperature, and humidity originating

from the MEF tower observatory, which represents the

entire tower footprint. Thus, defining the spatial scale

of interest to be that represented by eddy covariance

fluxes, sobs,H and sobs,LE incorporate representation

uncertainty as well. The flux uncertainties for MEF

(semiarid, open-canopy forest) may differ from the

estimates based on observations from a grassland

(Twine et al. 2000), although these estimates serve as a

basis from which to assess the impacts of other sources

of uncertainty.

Representation uncertainty srep,k results from het-

erogeneity in the site or region selected to model. Based

on the estimates of subgrid-scale variability in surface

temperature found from high-resolution modeling, we

set the representation uncertainty for the top soil layer

temperature at srep,T 5 2K (Essery et al. 2003). The

estimates of flux observational uncertainties sobs,LE and

sobs,H are calculated on a spatial scale representative of

the flux tower footprint. Thus, the representation un-

certainties srep,LE and srep,H are implicitly incorporated

into sobs,LE and sobs,H.

Parametric uncertainty spar,k results from uncertainty

in model parameters. While the purpose of this assimi-

lation calculation is to reduce parametric uncertainty

(that associated with the ecosystem resistance terms),

CLM4 has many other parameters that attempt to best

represent the physical attributes and ecosystem behav-

ior of the observation site. Among these parameters are

surface albedo, LAI, soil texture (percentage of soil that

is sand, silt, or clay), and percentages of the vegetation

that are bare soil, trees, grass, or shrubs. A one-at-a-time

sensitivity analysis is performed to inform an estimate of

parametric error (e.g., Abbaspour et al. 2015; Das et al.

2008). First, a series of 11 model simulations are pro-

duced: a control run, two runs with620% sand fraction

in estimating soil hydraulic conductivity, two runs with

620% LAI, two runs with 620% albedo, and four runs

with 120% bare soil, trees, grass, and shrubs individu-

ally. For each simulation, the root-mean-square (RMS)

deviations between the control modeled and the ex-

periment modeled latent heat flux, sensible heat flux,

and top soil layer temperature are calculated. For each

of these fields, the parametric uncertainty is estimated as

the Euclidean distance of the 10-dimensional RMS de-

viation point from the sensitivity tests to the origin.

These result in parametric uncertainty estimates of

spar,LE5 3.86Wm22, spar,H 5 3.09Wm22, and spar,T 5
0.15K. These estimates are the maximum deviation

considering fairly large (20%) perturbations on each

parameter. Thus, the true uncertainty due to these pa-

rameters is likely lower than these estimates. Con-

versely, uncertainty due to feedbacks when multiple

parameters are perturbed simultaneously and un-

certainty due to parameters not considered here con-

spire to increase the parametric uncertainty beyond this

estimate. While CLM4 has other parameters and pa-

rameterizations that would need to be accounted for to

fully quantify parametric uncertainty, we assume that

these experiments provide a sufficient estimate of spar,k.

Furthermore, the contribution of sobs,k to sk is much

larger than any reasonable estimate of spar,k.

We conduct a series of five experiments to assess the

importance of accounting for different uncertainty

terms in this land surface model calibration. Table 1

provides a summary of these experiments.We note that

other methods for statistical model calibration besides

the adaptive Metropolis approach outlined above may

be useful in practice (Jeremiah et al. 2011). However,

the experiments presented here focus on the impacts of

uncertainty quantification on the calibration results, as
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opposed to the calibration algorithm itself. In the first

experiment E1, the structural and parametric un-

certainties in the statistical model are neglected. Thus,

the error covariance matrix S has entries given by

s2
obs,k 1s2

rep,k. The second experiment E2 incorporates

the structural uncertainty (additive biases) into the

statistical model. The third experimentE3makes use of

the full uncertainty accounting outlined above, in-

corporating the additive bias terms into the model

calibration, and the entries of the error covariance

matrix S are given by s2
k 5s2

par,k 1s2
obs,k 1s2

rep,k. The

fourth experiment E4 examines the impacts of assum-

ing a shared bias for both latent heat and sensible heat

fluxes aF. In E4, uncertainties are estimated as in E3,

and separate flux biases are estimated for latent heat

(i.e., aLE) and sensible heat flux (i.e., aH). The fifth

experiment E5 examines the impacts of assuming fixed

observational uncertainties in the error covariancematrix

S and neglecting correlation in the error structure. InE5,

uncertainties s2
LE, s

2
H , and s2

T are estimated as inE3, and

we sample S from its conjugate prior, an inverse Wishart

distribution centered at diag(s2
LE, s

2
H , s

2
T) (see supple-

mental material).

3. Results

a. Posterior inference and the importance of error
accounting

The calibration technique results in tight constraints on

the model parameters and bias corrections that vary

depending on the method for accounting of uncertainty

(Fig. 3). The most drastic improvement comes from ac-

counting for model structural uncertainty (experiments

E2–E5 vs E1). When model structural uncertainty is ne-

glected, parameter values accumulate near the boundaries

of the prior ranges (Figs. 3a,d). This indicates that the

model is attempting to compensate for lack of a key

physical mechanism (the bias terms, aF and aT) by se-

lecting extreme calibration parameters. It is unlikely that

the theory governing transfer processes is in error bymore

than an order ofmagnitude; thus, this result highlights that

accounting for model structural uncertainty is critical.

We find that accounting for parametric uncertainty

has only a minor impact on the resulting posterior esti-

mates for calibration parameters (Fig. 3, E2 vs E3).

Across all experiments, the exchange between canopy

TABLE 1. Summary of error accounting in the five calibration

experiments.

Uncertainty E1 E2 E3 E4 E5

Observational X X X X X

Representation X X X X X

Structural X X X X

Parametric X X X

Distinct flux biases X

Sample covariance X

FIG. 3. Frequency distributions of the calibrated model parameters and biases for (a)–(d) E1, (e)–(j) E2, (k)–(p) E3, (q)–(v) E4, and

(w)–(bb) E5.
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and above-canopy air spaces ( fa) and the structural un-

certainties (aF and aT) are tightly constrained.When the

statistical model is given, the flexibility of separate bias

corrections for latent and sensible heat fluxes (E3 vsE4)

or to sample uncertainty in the observational covariance

matrix (E3 vs E5), the constraint on surface-to-canopy

exchange ( fg) increases, but the constraint on leaf

boundary layer exchange decreases ( fb). With total ET

fixed by calibrating to latent heat flux data, lower fg and

higher fb both serve to decrease the relative contribution

of transpiration to the total ET.

This is reflected in the calibrated estimates of T/ET in

experiments E4 and E5 relative to E3 (Fig. 4). Table 2

provides the 95% credible intervals and medians for the

parameters, biases, and T/ET for each calibration ex-

periment. As a wider representation of uncertainty is

incorporated into the calibration framework, the re-

sulting distribution of calibrated estimates of T/ET also

widens (Table 2, Fig. 4). Interestingly, as the accounting

of uncertainty becomes more complete (generally,

moving from left to right along the columns of Table 1),

the estimates of T/ET decrease. A recent study esti-

mates T/ET at MEF to be 0.49 6 0.23 (Berkelhammer

et al. 2016). By incorporating uncertainty and correlated

errors in the error covariance matrix S, experiment E5

yields the best agreement between our calibrated esti-

mates for T/ET and these previous estimates. While our

estimates for T/ET are notably higher than those of

Berkelhammer et al. (2016), all of the experiments

presented here overlap within the uncertainties in both

previous estimates of T/ET and those presented here.

b. Observationally constrained model performance

Posterior ensembles of model realizations are gener-

ated by drawing 100 random samples from the posterior

estimates of the resistance parameters and correspond-

ing biases. The calibration technique yields considerable

improvement in the agreement between the modeled

and observed latent heat flux, sensible heat flux, and soil

temperature (Fig. 5). The poor performance of experi-

ment E1 highlights the importance of accounting for

structural uncertainties (Figs. 5a–c).

Calibration yields substantial improvement in model

performance (Table 3, Fig. 5), as compared to the un-

calibrated model (Fig. 2). These improvements are

particularly notable in the simulation of latent heat flux

in experiments E2 and E3. When uncertainty in the

ecosystem resistance terms is accounted for, modeled

top soil layer temperatures and sensible heat fluxes also

agree well with observations, given the spread in these

ensemble members. The posterior model ensemble re-

sults for latent heat flux agree well with observations for

mid- and late season [day of year (DOY) 155 and later],

FIG. 4. Frequency distributions of the calibrated transpiration

fraction in (a) E1 (observational and representation uncertainty

only), (b) E2 (add structural uncertainty to E1), (c) E3 (add para-

metric uncertainty toE2), (d)E4 (add separate structural error terms

for latent and sensible heat fluxes to E3), and (e) E5 (estimate error

covariance matrix in E3). The vertical red line denotes the control

model ET partitioning.
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but yield a poor representation of early season latent

heat flux (DOY 125–155). This is attributed largely to

the increase in modeled soil temperature that was a re-

sult of improving the match between modeled and ob-

served soil temperature (note that the uncalibrated

model produces soil temperatures that are too cool; cf.

Fig. 5f).

While calibration in experiments E4 andE5 did yield

substantially different estimates of T/ET (Fig. 4), these

experiments did not improve model performance

TABLE 2. Median and 2.5%–97.5% credible intervals for model parameters and T/ET.

E1 E2 E3 E4 E5

fg 9.88 (9.37–10.0) 4.74 (2.00–9.48) 4.49 (1.92–9.22) 2.21 (1.18–6.09) 2.29 (1.27–5.12)

fs 0.89 (0.85–1.63) 0.59 (0.52–0.92) 0.59 (0.52–0.94) 0.57 (0.43–1.06) 0.66 (0.55–1.04)

fa 3.35 (1.41–5.23) 6.23 (3.23–9.37) 6.30 (3.21–9.37) 7.08 (3.74–9.68) 7.14 (3.85–9.72)

fb 0.29 (0.11–0.80) 0.90 (0.14–3.16) 0.92 (0.14–3.27) 3.66 (0.15–7.60) 3.18 (0.38–6.69)

aLE — 23.2 (20.2–26.5) 23.3 (20.1–26.7) 22.4 (16.7–28.3) 26.3 (22.6–29.6)

aH — — — 28.4 (18.3–33.7) —

aT — 3.20 (2.54–3.87) 3.22 (2.56–3.93) 3.53 (2.81–4.11) 3.46 (2.83–4.03)

S11 — — — — 498 (493–504)

S12 — — — — 20.31 (22.78–2.11)

S13 — — — — 0.00 (20.34–0.33)

S22 — — — — 236 (233–238)

S23 — — — — 0.01 (20.22–0.24)

S33 — — — — 4.27 (4.23–4.31)

T/ET 0.72 (0.65–0.74) 0.74 (0.63–0.80) 0.73 (0.61–0.80) 0.66 (0.55–0.74) 0.62 (0.50–0.72)

FIG. 5. Modeled fluxes of (left) latent heat, (center) sensible heat, and (right) temperature, using calibration parameters drawn from the

Markov chain results. Thick black lines are the observations, thin blue lines are the posterior ensemble results, and the dot–dashed red

lines are uncalibrated model results for the five experiments (a)–(c) E1, (d)–(f) E2, (g)–(i) E3, (j)–(l) E4, and (m)–(o) E5.
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relative to E3 (Table 3). Calibration (E3) decreased

model bias from 223.3Wm22, 225.1Wm22,

and 24.31K to 20.4Wm22, 20.4Wm22, and 20.04K

for latent heat flux, sensible heat flux, and soil tempera-

ture, respectively. RMSE decreased from 27.3Wm22,

35.9Wm22, and 4.43K for uncalibrated latent heat flux,

sensible heat flux, and top soil layer temperature to

18.6Wm22, 27.3Wm22, and 1.30K in E3 (Table 3). The

reductions in RMSE correspond to percent improve-

ments of 32%, 24%, and 71% for latent heat flux, sensible

heat flux, and top soil layer temperature, respectively.

These posteriorRMSE (and bias) values are calculated as

the mean of the RMSE (bias) from each of the 100 en-

semble members. Note that the improvements in RMSE

and bias are not only due to the accounting of structural

uncertainty (i.e., the model additive bias terms), but also

due to providing the calibration framework with the

flexibility needed to converge to more realistic posterior

parameter estimates (Fig. 3).

4. Discussion

We have outlined and implemented a Bayesian ap-

proach for the calibration of land surface model parame-

ters. This calculation demonstrates that the challenges

posed by having only data with large total errors and

models with large intrinsic biases may be overcome by

adequately accounting for uncertainties and biases within a

statistical calibration framework. Our approach focused on

the goal of improving estimates of T/ET and therefore

emphasized calibration of aerodynamic and vegetation

resistances that facilitate the transfer of heat and moisture

between soils, leaves, and the overlying atmosphere. We

have demonstrated the ability of this calibration approach

to constrain the posterior distributions of aerodynamic and

vegetation resistance parameters in CLM4. The advan-

tages of thismethod include 1) quantificationof uncertainty

in model structure, model parameters, and model output

(Tables 2, 3) and 2) calibratingmodel parameters such that

model output agrees with observational data, given the

uncertainties inherent in both the model and observations.

We find calibrated estimates of T/ET that agree with pre-

vious estimates for MEF (Berkelhammer et al. 2016).

A soil moisture data assimilation experiment was

conducted to assess the extent to which the imperfect

simulation of soil moisture in the ensemble affected the

modeled latent and sensible heat fluxes and T/ET. Soil

moisture as modeled by CLM4 was ‘‘nudged’’ toward

observations of soil moisture using a Kalman filter

(Kalman 1960). Soil moisture RMSE was reduced from

0.13mm3mm23 (control model) to 0.06mm3mm23.

This data-assimilated model, matching the soil moisture

data well, yielded only slight changes in the surface

fluxes. The mean differences between the control and

moisture-assimilated latent and sensible heat fluxes

were21.70 and 1.63Wm22, respectively. These changes

are much lower than the uncertainties in these quanti-

ties. The modeled T/ET changed from 0.622 in the

control model to 0.624 when soil moisture was assimi-

lated. The low sensitivity to the simulated soil moisture

is attributed in part to the fact that this simple data as-

similation approach does not strictly conserve water

mass (a water mass imbalance is calculated, based on the

updated soil moisture profile). Thus, while the true

sensitivity of T/ET to soil moisture is likely higher, this

simple experiment suggests that the results of this study

were not substantially skewed by an imperfect simula-

tion of soil moisture. This result reaffirms an earlier

model evaluation using a modified version of CLM4

(Wong et al. 2017).

The varying levels of constraint provided by the cali-

bration method on the model parameters suggests lim-

itations in the characterization of turbulent regimes

within the complex canopy of theMEF site. This result is

likely applicable to other types of landscapes. Thus, for

any given site, it is reasonable to expect to calibrate the

model to account for this representative discrepancy

(Abbaspour et al. 2015). The results presented here

focuson a single site and should be verified in a variety of

ecosystem settings. Performing these experiments for a

network of sites would permit the interpolation of the

benefits of this calibration approach to the regions be-

tween sites within the network, and cautious extrapolation

to the areas outside of the network, where observations

are lacking. This offers a method to improve model hy-

drological performance on a global scale, despite the lack

TABLE 3. RMSE (and mean model bias, in parentheses) for the uncalibrated model and calibrated model experimental ensembles.

Latent heat flux (Wm22) Sensible heat flux (Wm22) Soil temperature (K)

Uncalibrated 27.3 (223.3) 35.9 (225.1) 4.43 (24.31)

E1 34.3 (228.4) 32.3 (216.6) 3.09 (22.83)

E2 18.6 (20.5) 27.3 (20.4) 1.31 (0.01)

E3 18.6 (20.4) 27.3 (20.4) 1.30 (20.04)

E4 18.5 (21.0) 28.6 (26.0) 1.25 (0.01)

E5 18.6 (1.2) 27.4 (20.7) 1.23 (20.01)
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of readily available global datasets against which to cali-

brate (Das et al. 2008).

The ecosystem resistance parameters chosen in the

present study are clearly not exhaustive, yet serve well

to demonstrate the potential for this calibration

method to be applied to a wide range of land surface

modeling applications. Furthermore, the sensitivity

analysis described in error covariance was a repre-

sentative, but not complete, treatment of the para-

metric uncertainty in CLM4. The model calibration

results are conditional on the data employed (Schmidt

et al. 2016); thus, important extensions of this work

include incorporating additional model parameters as

calibration parameters and assimilating other obser-

vational data. Observations of soil moisture or stable

water isotope ratios in ecosystem water pools, for

example, would offer further constraint on the mois-

ture fluxes (Yan et al. 2015). The assimilation of CO2

fluxes would offer constraint on stomatal resistance,

independent of transpiration rates. Indeed, this type of

statistical approach has been used widely with success

in carbon cycle applications (Hararuk et al. 2014; Xu

et al. 2006; Schmidt et al. 2016; Ricciuto et al. 2008).

LAI was considered in the sensitivity analysis pre-

sented in section 2d(2), but it is an attractive parameter

to incorporate into the calibration itself. The focus of

this work was on the exchange parameters themselves,

so calibration of LAI directly is beyond the scope of this

study. A recent study found an empirical relationship

between LAI and T/ET of T/ET 5 0.71(LAI)0.14 (Wu

et al. 2017). Using a site- and season-averaged LAI for

MEF of 1.2m2m22 (Berkelhammer et al. 2016), this

relationship gives an estimated T/ET of 0.73, which is

within agreement with the 95% credible intervals from

E1 to E4. It is unclear, however, how this relationship

between LAI and T/ET extends to the open-canopy

forest of MEF, from the maize field from which it was

derived (Wu et al. 2016).

5. Conclusions

These caveats notwithstanding, we have presented a

comparison of calibrated model estimates for ET

partitioning in a land surface model. We have shown

that the model estimates for T/ET hinge on a sound

characterization of the uncertainties inherent in the

models and data employed. Our results indicate that

underestimating or misrepresenting uncertainty may

lead to estimates of T/ET that vary by more than 0.10.

Furthermore, the 95% credible range of estimated par-

titioning narrows as more uncertainties are neglected

(Table 2). This indicates that neglecting key uncertainties

may result in overconfident estimates of T/ET.

The single-column land surface model calibration ex-

periment presented here may be reproduced for a rep-

resentative network of sites scattered on a regional scale

to create calibrated regional surface datasets and cali-

brated model predictions. These projections and datasets

would prove useful in other hydrological applications,

such as that presented here. Such experiments will facil-

itate the use of widely available high-quality tower data

for the validation and calibration of land surface models

(Keller et al. 2008).
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